

$$\begin{array}{l} \mbox{Derivation of Michaelis Menten equation} \\ E+S \xleftarrow{k_1} ES \xleftarrow{k_3} E+P & k_1, k_2 \mbox{ and } k_3 \mbox{ are rate constants} \\ Simple binding & Slow \\ Very Fast \\ Velocity of the reaction is determined by slowest step \\ Therefore, v = k_3[ES] \\ When all the Enzyme [E_t] is complexed with S and producing P at maximum \\ V_{max} = k_3[E_t] = k_3\{[E_0] + [ES]\} \\ Dividing v by V_{max} we get, \quad \frac{v}{V_{max}} = \frac{[ES]}{[E_0] + [ES]} \\ According to equilibrium hypothesis, E and S are in rapid equilibrium with ES complex. So We could ignore the slow step ES --> E + P. \end{array}$$

At equilibrium, the rate of forward reaction is equal to the rate of backward reaction $k_1 [E_o] [S] = k_2 [ES]$ or $[E_o] [S] / [ES] = k_2 / k_1 = K_s$ where K_s is the dissociation constant (Michaelis constant) Therefore, $[ES] = [E_o] [S] / K_s$ Substituting in $\frac{v}{V_{max}} = \frac{[ES]}{[E_o] + [ES]} = \frac{[E_o] [S] / K_s}{[E_o] + [E_o] [S] / K_s}$ Dividing Numerator and Denominator by K_S / $[E_o]$, we get: $\frac{v}{V_{max}} = \frac{[S]}{K_s + [S]}$ Michaelis Menten equation $v = \frac{V_{max}[S]}{K_s + [S]}$ For Michaelis Menten equation, K_s = k₂/k₁

Turnover number of some enzymes

Enzyme	Turnover number
Carbonic anhydrase	600,000
Acetylcholine esterase	25,000
Penicillinase	2,000
Lactate dehydrogenase	1,000
Chymotrypsin	100
DNA polymerase I	15
Lysozyme	0.5

Some enzymes act very fast and some are very slow.

Enzyme (Substrate)	K _m value (in mM)
Catalase (H ₂ O ₂)	1100
Hexokinase (glucose)	0.15
Chymotrypsin (N-benzoyltyrosinamide)	2.5
Aspartate transaminase (Asp)	0.9
Fumarase (fumaric acid)	0.005

v : In cell, n ence, the equati	= k ₃ [E _t] [S]/ K _m nost often, [S] is on simplifies to:	+[S] << than K_m $v = k_3[E_t][S]/$
The ratio, k ₃ /I For example, chyn preferably at aror	K _m , talks about the c totrypsin, an endopr natic amino acids, h	atalytic efficiency. rotease that hydroly as the following k ₃ /l
Amino acid ester	Side chain	$k_{3}/K_{m}(s^{-1}M^{-1})$
Glycine	- H	0.13
		2.0
Valine	$-CH(CH_3)_2$	2.0
Valine Norvaline	$-CH (CH_3)_2$ $-CH_2CH_2CH_3$	360
Valine Norvaline Norleucine	-CH (CH ₃) ₂ -CH ₂ CH ₂ CH ₃ -CH ₂ CH ₂ CH ₂ CH ₃	360 3000

Second part - Determine the Michaelis constants

 In the second part of the experiment, you will determine the velocity of the reaction at different concentrations of substrate and calculate the K_m and V_{max} for β-glucosidase.

